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We consider the Kuramoto model of phase oscillators with natural frequencies distributed according to a
unimodal function with the plateau section in the middle representing the maximum and symmetric tails falling
off predominantly as ��−�0�m, m�0, in the vicinity of the flat region. It is found that the phase transition is
of first order as long as there is a finite flat region and that in the vicinity of the critical coupling the following
scaling law holds r−rc� �K−Kc�2/�2m+3�, where r is the order parameter and K is the coupling strength of the
interacting oscillators.
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Synchronization is a ubiquitous cooperative phenomenon
of interacting units. Unison chirping of crickets, synchronous
flashing of fireflies in some forests in South Asia, and net-
works of pacemaker cells in the heart are natural examples,
while arrays of lasers and Josephson junctions are physical
systems that show synchronization phenomena �1�. The most
successful and mathematically most tractable model for de-
scribing synchronization is the Kuramoto model �2�. An ex-
cellent description of the model and its extensions, as well as
some of its applications can be found in a recent review
paper �3�. The model describes synchronization of phase os-
cillators with different natural frequencies with all-to-all in-
teraction. It was found that when coupling strength exceeds
some critical value, part of the oscillators lock to a common
frequency. Such a state can be suitably described with an
order parameter measuring the degree of coherence of the
phases of the oscillators. For general symmetric distributions
with single maximum and with nonzero second derivative at
the maximum, the phase transition is of second-order type
�2�. The phase transition is of first-order type when the dis-
tribution of natural frequencies is uniform �4�. We extend
that result to all distributions having a plateau at the maxi-
mum. Also we obtain different scaling behavior near the
transition point for different classes of functions.

The Kuramoto model considers the population of N phase
oscillators with phases �i evolving by the equation

�i
˙ = �i +

K

N
�
j=1

N

sin�� j − �i� , �1�

with equal coupling strength K /N between all pairs of oscil-
lators i and j. The natural frequencies of the oscillators �i are
drawn from some distribution g���. We will consider distri-
butions that are symmetric around the mean �which can be
taken zero without loss of generality, g�−��=g����, and also
nonincreasing for ��0. The degree of coherence of phases
is suitably expressed by the order parameter r defined as

rei� =
1

N
�
j=1

N

ei�j . �2�

Because of symmetry, for an infinite number of oscillators
the mean phase can be also taken to zero. Then the dynamics
of every oscillator is governed by its natural frequency and
its coupling to the mean phase

�i
˙ = �i + Kr sin�� − �i� = �i − Kr sin �i. �3�

For an infinite population of oscillators one can analyze the
probability density function ��� ,� , t� of oscillators having
intrinsic frequency � and phase �. Its evolution is governed
by the continuity equation

��

�t
+

���v�
��

=
��

�t
+

����� − Kr sin ���
��

= 0, �4�

where we have omitted the subscript i appearing in Eq. �3�
for the speed v= �̇. Then the order parameter is expressed
through the probability density function as

r =� � d�d�ei�g������,�,t� . �5�

We are interested in stationary solutions. For strong enough
coupling a nonzero solution for the order parameter r is
possible. Then oscillators with natural frequencies obeying
�� � �Kr will be frequency locked to the mean phase, and
their phase will be

� = arcsin� �

Kr
	 . �6�

The locked phase in Eq. �6� is constrained to −� /2	�
	� /2 because the other solutions are unstable. The station-
ary distribution describing locked oscillators is

���,�� = 

� − arcsin� �

Kr
	� . �7�

The other oscillators run out of synchrony and their distribu-
tion is symmetric and they do not contribute to the order*lasko@feit.ukim.edu.mk
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parameter. The self-consistent equation for the order param-
eter r is

r = �
����Kr

�
−�/2

�/2

d�d�ei�g���

� − arcsin� �

Kr
	� . �8�

Because r is real, the imaginary part of the integral is zero,
so

r = �
����Kr

�
−�/2

�/2

d�d� cos �g���

� − arcsin� �

Kr
	� .

�9�

Integrating the last equation and using the properties of the
Dirac function and the symmetry of g��� one obtains

r = 2Kr�
0

�/2

d� cos2 �g�Kr sin �� . �10�

The trivial solution r=0 corresponds to the incoherence and
is the only one for coupling smaller than critical. The non-
zero solution is related to the partial synchronization. If the
distribution is unimodal �nonincreasing for ��0, and with
maximum only for �=0� the critical coupling is obtained by
taking the limit r→0 in Eq. �10�,

1 = 2K�
0

�/2

d� cos2 �g�0� , �11�

and its value is

Kc =
2

�g�0�
. �12�

The phase transition to partial synchronization is of second-
order type and power series expansion of the unimodal dis-
tribution g�w� around the zero leads to the following scaling
behavior �3�:

r �− 16�K − Kc�
�Kc

4g��0�
. �13�

A more general result has been obtained for the case

g��� � 1 − �� − �0�m, m � 0, �14�

leading to the following dependence for the order parameter

r � �K − Kc�1/m �15�

in the vicinity of the critical point �5�.
Here we consider a symmetric distribution g���=g�−��

with a flat maximum. For ��0, g��� is defined by

g��� = g�0� + f�� − �0�H�� − �0� , �16�

where �0�0, H��� is the unit step Heaviside function, and
f��� is a decreasing function of � with f�0�=0. The tail of
g��� is an arbitrary function with finite or infinite support
with the restrictions imposed by the fact that g��� is
nonnegative, nonincreasing, and normalizable. As we will
see later, the critical point is determined by the width of the
plateau. The scaling behavior of the order parameter near the

critical point �Kc ,rc� is determined only from the oscillators
that are locked to the mean phase �those from the plateau and
its vicinity�. Therefore, in order to examine the asymptotic
behavior close to the critical point, we can keep only the
dominant term of the tail f��−�0�, for which we assume a
power law dependence. For the purpose of determining the
asymptotics, we take that above and close to the flat region,
g��� behaves essentially as

g��� = g�0� − C�� − �0�mH�� − �0� , �17�

where C is a constant and m�0 is a parameter. Schemati-
cally, g��� is depicted in Fig. 1�a�.

From Eq. �10� we see that the border of frequencies of
oscillators contributing to the order parameter is �b=Kr. If
�b	�0 the equation for r is the same as the one for obtain-
ing the critical coupling �Eq. �11��, which is consistent only
for K=Kc �the only solution for K�Kc is r=0�. So, for the
same value of the coupling—the critical one, the interval of
the frequencies belonging to synchronized oscillators can
stretch as far as all the plateau. For different frequencies �b
one has different values for the order parameter r=�b /Kc,
which can be deduced from Eq. �6� by taking �=� /2. All
such values for r are admissible solutions of the self-
consistent equation �10� and correspond to the vertical
stretch of solutions depicted in Fig. 1�b�. If all the oscillators
belonging to the plateau are locked we obtain the critical
value of the order parameter

rc =
�0

Kc
=

��0g�0�
2

, �18�

which for uniform distribution of natural frequencies has a
value rc=� /4 �4�. The value of rc decreases with narrowing

(

(

FIG. 1. �a� Sketch of distributions �Eq. �17�� for positive fre-
quencies � near the end point of the plateau for m=1/2, 1, and 2.
�b� The order parameter r�K� for the distributions given in �a�.
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of the plateau, and in the limiting case �0→0, the phase
transition becomes of second order.

For coupling stronger than the critical, some oscillators in
the vicinity of the plateau lock too. Then the self-consistent
equation for r after elimination of one r on each side in Eq.
�10� and using the form of the distribution g��� �Eq. �17��,
becomes

1 = 2K�
0

�/2

d� cos2 �g�0� − 2CK�
0

�/2

d� cos2 ��Kr�m

��sin � − sin �0�mH�Kr�sin � − sin �0�� , �19�

where phases � and �0 correspond to frequencies � and �0
according to Eq. �6�. Using Eq. �12� the first integral is sim-
ply

I1 = 2K�
0

�/2

d� cos2 �g�0� =
K

Kc
. �20�

Because of the Heaviside function in Eq. �17�, the second
integral runs from �0=� /2−
� to � /2,

I2 = 2CK�Kr�m�
�0

�/2

d� cos2 ��sin � − sin �0�m. �21�

When the coupling is little bigger than the critical, then the
highest locked frequency is close to �0, and so the corre-
sponding phase �0 is close to � /2, or 
�→0. After some
trigonometric transformations, using the dominant terms of
sine and cosine functions from their power series and an
obvious variable substitution, I2 becomes

I2 = 2CK�Kr�m
�2m+3�
0

1

dx�1 − x�2xm�1 −
x

2
	m

= A
�2m+3.

�22�

The integral in I2 is convergent for m�−1. For integer val-
ues of the parameter m, the integral is reduced to

I2 = 2CK�Kr�m�
��2m+3Sm, �23�

where Sm is the sum

Sm = �
k=0

m
�− 1�m−k2k−m+1Ck

m

�2m − k + 1��2m − k + 2��2m − k + 3�
, �24�

involving binomial coefficients Ck
m. The first few values of

the sum are S0=1/3, S1=1/15, and S2=2/105.
Using Eqs. �20� and �22� and �22� in the self-consistency

equation �19� one obtains

1 =
K

Kc
− A�
��2m+3. �25�

Near critical point �Kc ,rc�,

r = rc + 
r ,

K = Kc + 
K , �26�

one can take

A � 2CKc�Kcrc�m�
0

1

dx�1 − x�2xm�1 −
x

2
	m

, �27�

which means we can treat A as a constant. Then the differ-
entials 
� and 
K are related with


K = AKc�
��2m+3. �28�

For couplings a bit stronger than the critical Kc, the boundary
of the plateau and the corresponding phase are related with
�Eq. �6��,

�0 = �Kc + 
K��rc + 
r�sin �0. �29�

Using the substitution 
�=� /2−�0 and Eq. �18� one can
obtain another equation relating the differentials 
�, 
K, and

r,


� � 4

��0g�0�

r + �g�0�
K , �30�

which for uniform distribution reduces to �4�


� � 8

�

r +

�

2�0

K . �31�

Finally, combining Eqs. �28� and �30� leads to


K2/�2m+3� � C1
K + C2
r , �32�

from where it is clear that 
r scales as


r � 
K2/�2m+3�. �33�

The dependence r�K� for several values of m is shown in Fig.
1�b�. As can be seen this general result also contains the
previously reported scaling for uniform distribution �m=0�
of natural frequencies �4�. Usually one defines critical expo-
nents describing the behavior of physical parameters �quan-
tities� in the immediate neighborhood of critical points or
second-order phase transitions. Here we have a peculiar situ-
ation with singular behavior near first-order phase transition.
In addition one can remark that the exponents obtained in
this case differ from those characterizing the second-order
transition in the Kuramoto model �Eq. �15��.

Synchronization of two interacting phase oscillators takes
place if the coupling is strong enough, or their natural fre-
quencies are sufficiently close �6�. For a population of
equally coupled oscillators, with an increase of the coupling
strength synchronization appears first among the closest os-
cillators. When the distribution function has a single maxi-
mum the likelihood of synchronization is largest among the
oscillators with natural frequencies leading to highest values
of g���. With the coupling constant increasing toward the
critical value, the seed of the cluster of synchronized oscil-
lators consists of an infinitesimal interval around the maxi-
mum, and the phase transition is of second order. However,
for distribution functions with a flat top there is no such
“dominant” density and all the plateau forms the seed for the
synchronized cluster. Then a macroscopic part of the oscilla-
tors contribute to the order parameter, thus leading to a first-
order transition.

In this Brief Report we have studied the Kuramoto model
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with natural frequencies distributed according to the sketches
in Fig. 1�a�. From previous studies �7� it is known that in the
Kuramoto model with bimodal distribution of natural fre-
quencies, the phase transition is of first order showing typical
hysteresis and metastability. The case considered here is in
some sense intermediate between bimodal and unimodal dis-
tributions. The distribution function in the interval between
the two maxima of the bimodal distribution is represented by
a flat region instead of a distribution with single minimum.
The disappearance of the minimum leads to destruction of
the competition between surrounding maxima, squeezing the

hysteresis into a single vertical line in the r�K� dependence.
As a result the model under consideration lacks hysteresis
and metastability.

An explicit asymptotic dependence was obtained for the
order parameter above the critical value of the coupling con-
stant. It is intuitively quite acceptable that the increase of the
order parameter is faster when the power law decay of the
natural frequencies is less pronounced.

We thank the referees for their useful critical comments
and suggestions

�1� S. H. Strogatz, SYNC: The Emerging Science of Spontaneous
Order �Hyperion, New York, 2003�.

�2� Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence
�Springer-Verlag, Berlin, 1984�.

�3� J. A. Acebrón et al., Rev. Mod. Phys. 77, 137 �2005�.
�4� D. Pazó, Phys. Rev. E 72, 046211 �2005�.
�5� S. C. Manrubia, S. S. Mikhailov, and D. H. Zanette,

Emergence of Dynamical Order �World Scientific, Singapore,
2004�.

�6� A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences �Cambridge Univer-
sity Press, Cambridge, 2001�.

�7� L. L. Bonilla, J. C. Neu, and R. Spigler, J. Stat. Phys. 67, 313
�1992�.

BRIEF REPORTS PHYSICAL REVIEW E 76, 057201 �2007�

057201-4


